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This chapter presents an introductory overview of concepts that underscore the 
g eneral framework of item response theory (IRT).

Latent Measurement

Traits, abilities, and attitudes (i.e., constructs) in music teaching and learning are not 
directly measurable. Examples of these constructs include but are not limited to musical 
aptitude, music performance achievement, musical preference, self-efficacy, affective 
response to music, musical expectancy, and so forth. These constructs can be easily 
explained by descriptive criteria and qualitative attributes; however, they cannot be 
directly measured. The measurement of these constructs can only be inferred indirectly 
through the measurement of secondary behaviors that are considered to be theoreti-
cally representative of the construct. Any construct that cannot be directly measured 
but rather inferred through the measurement of secondary behaviors is considered 
to be latent.

In order to infer a latent construct from a secondary behavior, an apparatus must be 
constructed with the intent to collect data that specifically gathers empirical evidence 
of these secondary behaviors. Items must be carefully constructed with the explicit 
intent to provoke persons’ responses that directly reflect the latent construct. The data 
collected from the interaction between each person’s observed response and each item 
provide observable, empirical evidence that can serve as a starting point to establish 
inferences. A mere ordering of observed responses by persons who answered the least 
correct of items to persons who answered the most correct of items is not measurement, 
however. Similarly, an ordering of observed responses of items that were answered the 
least correct to items that were answered the most correct is not measurement. These are 

chapter 22

Item R esponse Theory 
and Music Testing

Brian C. Wesolowski

0004186095.INDD   479 9/7/2018   11:22:03 AM



Dictionary: NOAD

OUP UNCORRECTED PROOF – FIRST PROOF, 09/07/2018, SPi

480   brian c. wesolowski

simply examples of ordinal rankings based on proportion-correct observed responses. 
This data answers the question of “how many” but not “how much” In order to answer 
the question of “how much,” the implementation of a measurement model is necessary. 
Measurement models provide a mechanism for transforming observed responses into 
estimated measures of person ability and item difficulty. It is only with the implementa-
tion of a measurement model that persons and items can be validly, reliably, and fairly 
compared. Furthermore, it is only with the implementation of a measurement model 
that inferences can be drawn as to how well the items empirically define the intended 
construct being measured. The implementation of measurement models into steps of the 
scientific method, therefore, is necessary for meaningfully connecting the substantive 
theory of a latent construct with the measurement of persons and items.

“Item response theory,” or latent trait theory, is broad umbrella term used to describe 
a family of mathematical measurement models that considers observed test scores 
to be a function of latent, unobservable traits (Birnbaum, 1957, 1958a, 1958b, 1967; 
Lazarsfeld, 1950; Lord & Novick, 1968). Item response theory uses probabilistic distribu-
tions of responses as a logistic function of person and item parameters in order to 
define a latent construct. In other words, IRT models provide methods of data analysis 
that use the latent characterizations of objects of measurement (i.e., persons) and latent 
characterizations of agents of measurement (i.e., items) as predictors of observed 
responses in order to empirically define a latent construct. Figure  22.1 represents a 
 conceptual operationalization of a unidimensional latent construct.

The construct represented in Figure 22.1 has several notable characteristics:

 1. The latent construct is represented by a unidimensional, continuous line;
 2. The line, acting as a scale of measurement (i.e. a “ruler”), is marked off in equal, 

interval-level units;
 3. The items are calibrated to the line with a relative positioning that reflects each 

item’s difficulty level; and
 4. The persons are calibrated to the line with a relative positioning that reflects how 

much or how little of the construct each person possesses.

Person A

Latent Construct

Item 2Item 1 Item 3 Item 4 Item 5

Person B

Figure 22.1 Operational definition of a unidimensional latent construct with calibrations of 
persons and items.
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Items calibrated to the line from left to right represent less difficult items to more 
difficult items. Another way to conceptualize an item calibration is the item’s rank 
ordering based on its discriminatory ability to best distinguish between persons at 
various locations on the continuum. This is discussed later under the section titled 
“Item Information Function.” As demonstrated in Figure 22.1, item 1 is the least difficult 
item and item 5 the most difficult item. Similarly, persons calibrated on the line from 
left to right represent persons with less possession of the latent construct (e.g., lower 
ability or lower achievement) to persons with more possession of the latent construct 
(e.g., higher ability or higher achievement). In the example presented in Figure 22.1, 
Person B has a higher ability than Person A.

One important premise of IRT is to ascertain a conceptual measurement of a person’s 
ability using a conceptual ruler the same way one would ascertain a physical  measurement 
of one’s height using a physical ruler. As a substantive example, assume a measurement 
apparatus was constructed in order to measure musical aptitude. A person’s musical 
aptitude is not directly observable in the same way that the measurement of a person’s 
height is. Therefore, the amount of musical aptitude one possesses can only be inferred 
based on a person’s responses to test items that theoretically represent the construct of 
musical aptitude. In this case, the continuous line would represent the unidimensional 
construct of musical aptitude. The line acts as a conceptual “ruler” that is marked off in 
equal interval-level log odds (i.e., logit) units. Logits are discussed later in the section 
titled “Constructing Interval Units on the Continuum: Log Odds Units.” Items are 
developed to represent the construct based on the test constructor’s theory of specific 
observable tasks that represent musical aptitude. Each person would then interact with 
(i.e., respond to) each item, resulting in a collection of observed responses. Assuming 
the items called for dichotomous (i.e., correct/incorrect) scoring, each correct response 
would be marked with a score of “1” and each incorrect response would be marked with 
a score of “0.” Once all of the observed responses are collected and dichotomously 
scored, both items and persons could be rank ordered based on their observed propor-
tion-correct responses. Then, the implementation of an appropriate IRT measurement 
model would transform the observed responses into estimated linear measures. These 
estimated measures supply information that indicates: (1) which items appropriately 
define the latent construct of musical aptitude; (2) how well the items define the latent 
construct of musical aptitude; (3) how well the items discriminate between persons at 
various ability levels; (4) which persons were appropriately measured; and (5) how much 
musical aptitude those persons possess.

It is important to note that a measurement apparatus is a conceptual representation, 
or operational definition, of the developer’s definition of the latent construct. Although 
the content of the apparatus is driven by theoretical, research-based principles and 
understandings, the unique collection of items is only one possible operationalization of 
the construct. Item response theory is the mechanism that provides an empirical 
 rationale for the developer’s definition of the operationalization.
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Item Response Functions and Item 
Characteristic Curves

The example of musical aptitude provides one instance of a music assessment context 
where multiple persons respond to multiple items. This can be more specifically charac-
terized by a single person’s response (s) to a single item (i) resulting in an individual 
interaction (Xis). For a dichotomous item, only two possible observed outcomes for 
each interaction can be achieved: (1) a correct response (Xis = 1); and (b2) an incorrect 
response (Xis = 0). In order to model the probability of these responses as a distribution 
of the persons on a latent continuum, the ability of the person (θ ∈ (∞, +∞)) must be 
parameterized as a logistic function of the item’s difficulty (bi ∈ (−∞, +∞)). An item 
response function (IRF) is the function of a person’s ability (θs) to an item’s difficulty (bi). 
In other words, the IRF is a mathematical function that relates the latent construct to 
the probability of a single person answering a single item correctly. The probability of a 
correct response is denoted as P xis( )=1 , and the probability of an incorrect response 
is denoted as P xis( )= 0 . The IRF is a logistic function, meaning that the probability of a 
correct response P xis( )=1  increases with respect to the increasing position of a person’s 
ability (θs) on the unidimensional continuum. Conversely, the probability of an incorrect 
response ( ( ))P xis= 0  increases with respect to the decreasing position of a person’s ability 
(θs) on the unidimensional continuum.

Each IRF can be characterized by a monotonically increasing function called an item 
characteristic curve (ICC). Figure 22.2 is a graphical depiction of an ICC.
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Figure 22.2 Graphical depiction of an item characteristic curve (ICC).
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The abscissa (i.e., horizontal axis) represents person ability on the latent construct  
 ( ( , ))θ ∈ −∞ +∞ , and the ordinate (i.e., vertical axis) represents the probability of a correct 
response in the range between 0 (0% chance of a correct response) and 1 (100% chance 
of a correct response). The S-shaped curve (i.e., ogive) is a graphical representation that 
provides a full illustration for items at all ability levels on the latent continuum.

The ICC is defined by the following mathematical expression that connects a person’s 
probability of success on an item to their ability on the latent continuum:

P x
b

bis
i s

i s

( )
exp( )

,=1
1

=
−

+ −
exp( )θ

θ

where:
P xis( )=1  = the probability that person s answers item i correctly;
bi = a threshold parameter for the difficulty of item i;
θs = a threshold parameter for the ability of person s.

An important characteristic of the ICC is its inflection point. For most IRT models, the 
inflection point represents the intersecting point at which the probability of answering an 
item correct is .50. This can also be described as the threshold for where a person’s odds 
change from a 50% chance of answering an item incorrectly to a 50% chance of answering 
an item correctly. The item parameters control the location of the IRFs. Therefore, this 
function indicates that a person possessing more of the latent trait should have a higher 
chance of correctly answering a more difficult item than a person possessing less of the 
latent trait. As discussed later in the chapter, this intersection point is of importance 
because this is the point at which there is the most item information. More specifically, 
the inflection point is the point at which the item maximally discriminates persons.

Constructing Interval Units on the 
Continuum: Log Odds Units

In the same way that inches or centimeters are equal divisions of a physical ruler used 
to measure height, log odds units (i.e., logits) are equal divisions of a conceptual ruler 
used to measure items and persons on a latent construct. If we are interested in measuring 
musical aptitude, we may ask each person to respond to four items (i1, i2, i3, i4). If person 1 
(θ1) answers i1 and i2 correctly and i3 and i4 incorrectly, they would receive an observed 
sum score of 2. If θ2 answers i1 and i2 incorrectly and i3 and i4 correctly, they would also 
receive an observed sum score of 2. However, let us suppose that items i3 and i4 were 
more difficult than items i1 and i2. Do θ1 and θ3 deserve to have the same observed sum 
score? If we assume for this example that the items and persons are functioning according 
to the expectations of the model, the answer is no. The next logical questions would then 
be “How much do the items differ?” and “How much do the persons differ?” In order to 
answer these two questions, there must be a mechanism in place to compare how much 
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the questions differ in difficulty and how much the persons differ in ability. Therefore, a 
nonlinear transformation of proportion scores for both items and persons must be 
made to interval-level units. A logistic transformation of the nonlinear proportion 
correct scores of θ1 and θ2 and the proportion correct scores of i1, i2, i3, and i4 provides 
the mechanism needed to answer the “How much?” question. The transformation assigns 
both the persons and items an estimated interval-level measure (i.e., calibration of 
items and persons on the latent continuum) in logits.

This logit scale is developed independently of both the particular items included in 
the test as well as the particular persons being measured due to the assumption of 
parameter invariance. Wright (1993) notes:

when any pair of logit measurements have been made with respect to the same origin 
on the same scale, the difference between them is obtained merely by subtraction . . . 
the logit scale is unaffected in variations in the distribution of measures that have 
been previously made, or which items . . . may have been used to construct and calibrate 
the scale. The logit scale can be made entirely independent of the particular group 
of items that happen to be included in a test . . . or the particular samplings of persons 
that happen to have been used to calibrate the items. (p. 288)

The transformation produces values that theoretically fall between −∞ and ∞. The 
example figures provided in this chapter limit those values to a more practical range of 
−3.0 to 3.0. A logistic transformation is defined as:

Ψ[ ] ln ,x x
x

=
−





1

where:
Ψ[ ]x  = logit transformation for x;
ln = natural logarithm;
[x / x−1] = proportion correct responses.

Engelhard (2013) clearly delineates between the logistic transformations of persons versus 
the logistic transformations of items. Person logits are defined by:

Ψ[ ] ln ,p p
p

=
−









1

where:
p = number of correct items/total number of items for x.

Item logits are defined by:

Ψ[( )] ln ( )
( )

,p value p value
p value

− =
−

− −










where:
(p-value) = number of correct responses/total number of persons responding to 
the item.
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The logit units allow for the comparison of items and persons in a meaningful way that 
answers the question of “how much.”

Assumptions of Item Response Theory

The following section describes the assumptions of item response theory, including 
parameter invariance, unidimensionality, and local independence.

Parameter Invariance

Parameter invariance indicates an equality of item and person parameters from different 
person populations or measurement conditions. In other words, person and item param-
eters are sample independent. Item parameters are independent of (i.e., invariant across) 
the ability levels of persons responding to them. Likewise, person parameters are inde-
pendent of (i.e., invariant across) the items measuring the ability of the persons.

The importance of parameter invariance comes in the form of providing inferences 
of generalizability between person ability and item difficulty. In order for generaliza-
tions to be valid, measurement models must be used that provide measurement con-
ditions where parameters are invariant. Measurement models that do not maintain 
properties of parameter invariance succumb to the variability attributed to the sample. 
In other words, estimations of item difficulty and person ability are based on the observed 
interactions of the sample within each individual assessment context. Parameter 
invariance is estimated for unidimensional IRT models when θ  is normally distributed 
with M = 0 and SD = 1. As a result, any variation in item or person estimates across dif-
ferent samples from the same population is considered to be a result only of measure-
ment error. Perfect parameter invariance, however, is considered to be a measurement 
ideal that can never be achieved (Engelhard, 2013). Therefore, perfect model data fit is 
never expected.

Unidimensionality

Unidimensionality implies that persons and items can be described by a single latent 
construct. From a psychological perspective, unidimensionality refers to the specific 
construct that influences a person’s performance (McNamara, 1996). Unidimensionality 
is possible when the items collectively measure the same weighted composite of ability. 
More specifically, the psychometric assumption of unidimensionality is met when: 
(1) all of the items used in the measurement apparatus measure the same construct; 
and (2) persons only use their ability on the construct to respond to the test items. 
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Wright and Linacre (1989) indicate that the empirical analysis of dimensionality can 
be addressed in three steps:

1. Analyze the relevant data according to a unidimensional measurement model;
2. Find out how well and in what parts these data do conform to our intentions to 

measure; and
3. Study carefully those parts of the data, which do not conform, and hence cannot 

be used for measuring, to see if we can learn from them how to improve our 
observations and so better achieve our intentions.

When the assumption of unidimensionality is true, local independence may be 
obtained (Lord, 1980; Lord and Novick, 1968).

Local Independence

The graphical representation of the ICC in Figure 22.2 represents one ICC. In other 
words, it represents only one probable outcome P xis( )=1  resulting from the interaction 
between an item difficulty (bi) and a person ability (θs). Multiple items, however, are 
necessary to operationalize latent constructs. Each item maintains its own representative 
ICC, and the likelihood of a person’s success on an item is a represented by a function of 
only their ability related to the latent trait and the characteristic of that item. Parameters 
are therefore considered to be conditionally independent when each item response is 
independent given each examinee’s position on the latent continuum. This means that 
after controlling for θs the item responses should be uncorrelated. Local independence 
provides statistically independent probabilities of item responses and can be characterized 
by the following function:

P X x X x P X P Xis is s is is( , | ) ( | ) ( | ).1 1 2 2 1 21 1= = = = =θ θ θ

The assumption of local independence posits that only the characteristics of the test 
items and person’s ability relate to the construct being measured. As an example, if a test 
item somehow aids the test taker in correctly responding to another item, the assump-
tion of local independence is violated.

Although Lord (1980) considered local independence to be met if the underlying 
assumption of unidimensionality was met, Hambleton, Swaminathan, and Jane Rogers 
(1991) argue that local independence and unidimensionality are distinct qualities: 
“local independence will be obtained whenever the complete latent space has been taken 
into account” (p. 11). It is argued that the results of item dependency present potential 
implications of biased parameter estimation, inflated reliability estimates, false esti-
mations of measure precision, and artificially small estimates of standard error. Each of 
these implications has potential to affect the overall dimensionality of the measure, 
thereby making unidimensionality and local independence separate issues of concern.
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Common Item Response Theory Models

There are over 100 IRT models that can be classified into six basic categories: (1) models 
for items with binary-scored and/or polytomously-scored response categories, (2) non-
parametric models, (3) models for response time or multiple attempts, (4) models for 
multiple abilities or multiple cognitive components, (5) models for nonmonotone items, 
and (6) models with special assumptions about response models (van der Linden & 
Hambleton,  1997). In this chapter I examine three of the more common models for 
binary response (dichotomous) items: one-, two-, and three-parameter logistic models 
and two of the more common models for ordered response (polytomous) response 
items: the partial credit (PC) model and the rating scale (RS) model.

One-Parameter Logistic Model

The one-parameter logistic (1-PL) model (Rasch, 1960) predicts the probability of a 
correct response from an interaction between a person’s ability and one parameter: the 
item difficulty parameter. In other words, a person’s chance of answering an item correctly 
is based on the relationship between the person’s ability and how difficult the item is. 
The 1-PL model is mathematically specified as follows:

P X b
a b

a bis s i
s i

s i

( | , )
exp[ ( )]

exp[ ( )]
,= =

−
+ −

1
1

θ
θ
θ

where:
θs  = ability of person s;
bi  = difficulty of item i;
a  = common discrimination parameter.

If persons s’s ability is greater than the difficulty of item i, than θs will be greater than .00 
logits and the probability of answering the question correctly will be greater than 50%. 
Conversely, if a person s’s ability is less than the less than the difficulty of item i, than θs 
will be less than .00 logits and the probability of answering the question correctly will be 
less than 50%. The item difficulty parameter ( bi ) represents an index of item difficulty 
that corresponds to the value of θs at the ICC’s inflection points of the curve.

A unique characteristic of the 1-PL model is that there is a common discrimination 
parameter (a). The discrimination parameter provides information on how related the 
item is to the latent trait. More specifically, it is the slope of the curve as it crosses the 
probability of .50. A result of holding this parameter constant is that the items do not 
cross, meaning they are all equally discriminating. This indicates that the measures 
produced by the 1-PL model are sample-free for the agents of measurement (i.e., items) 
and test-free for the objects (i.e., persons). This sample/item-free characteristic is a 
property of measurement referred to as specified objectivity, and only occurs in the 1-PL 
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model. The implication of employing only the item difficulty parameter is the displace-
ment of the ICC from left to right. In all other aspects, the ICCs are identical. Figure 22.3 
demonstrates four items with varying difficulty levels.

Each of the item ICCs run parallel to each other and do not cross because they have a 
common discrimination parameter that results in the same slope. As a result, each item 
is equally discriminating. The differences in the items are their difficulty, or the location 
(left to right) on the latent trait. The difficulty level is indicated by where the point 
of inflection occurs across the horizontal axis. Item 1 (i1) has a difficulty level of −1.00 
logits, i2 has a difficulty level of −.50 logits, i3 has a difficulty level of .00 logits, and i4 has 
a difficulty level of 1.00 logits. Therefore, person s (θs) with a value of −1.00 has a 50% 
chance of correctly answering i1 correctly, person s (θs) with a value of −.50 has a 
50% chance of correctly answering i2 correctly, and so forth.

Two-Parameter Logistic Model

The two-parameter logistic (2-PL) model (Birnbaum,  1957,  1958a,  1968) predicts the 
probability of a correct response to a test item based on two parameters: item difficulty 
( bi ) and item discrimination ( ai ). The 2-PL model is mathematically specified as follows:
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Figure 22.3 Graphical depiction of four item characteristic curves (ICCs) in the context of a 
one-parameter logistic model (1-PL): i1 (a1 = 1.00; b1 = −1.00; c1 = 0.00), i2 (a2 = 1.00; b2 = −0.50; 
c1 = 0.00), i3 (a3 = 1.00; b3 = 0.00; c1 = 0.00), i4 (a4 = 1.00; b4 = 1.00; c1 = 0.00).
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P X b a
a b
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−
+ −
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θ
θ
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where:
θs  = ability of person s;
bi  = difficulty of item i;
ai  = item i’s discrimination parameter.

In the equation represented by the 1-PL model, the common discrimination parameter 
was represented by a. In the equation representing the 2-PL model, ai represents an item 
discrimination parameter that is freed to vary by item. The item discrimination param-
eter in the 2-PL model, therefore, describes the unique relationship of each item to the 
latent trait.

Figure 22.4 graphically depicts four items. Items i1 and i2 have the same difficulty level 
(b1 = −1.00; b2 = −1.00). Note the crossing of the ICCs at the intersection of .50 probabil-
ity of a correct response and −1.00 logits. However, they differ in their discrimination 
slope (a1= .50; a2 = 1.00). Note the flatter slope of i1 compared to the steeper slope of i2. 
The same is true for items i3 and i4. Items i3 and i4 have the same difficulty level (b3 = .00; 
b4 = .00). Note the crossing of the ICCs at the intersection of .50 probability of a correct 
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Item Characteristic Curves: 2-PL

Figure 22.4 Graphical depiction of four item characteristic curves (ICCs) in the context of a 
two-parameter logistic model (2-PL): i1 (a1 = 0.50; b1 = −1.00; c1 = 0.00), i2 (a2 = 1.00; b2 = −1.00; 
c1 = 0.00), i3 (a3 = 0.50; b3 = 0.00; c1 = 0.00), i4 (a4 = 1.00; b4 = 0.00; c1 = 0.00).
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response and .00 logits. However, they differ in their discrimination slope (a3 = .50;  
a4 = 1.00). Note the flatter slope of item i3 compared to the steeper slope of item i4. The 
discrimination is an index represented by the steepness of the ICC at its inflection point. 
Parameters with larger ai  values will demonstrate steeper ICCs, and parameters with 
smaller ai  values demonstrate flatter ICCs. Substantively, this means that items i2 and i4 
are stronger items, as they have stronger discriminating power. However, from a visual 
perspective, both pairs of ICCs cross at their inflection point, changing the ordering of 
persons and items. For a person where (θs) = −1.00, items i3 and i4 are more difficult. 
However, for a person where (θs) = 2.00, item i1 is more difficult than item i4. As opposed 
to the 1-PL model, the 2-PL model violates the measurement characteristic of specified 
objectivity, where the ordering of the persons and the ordering of the items does not 
remain constant across the continuum of theta values.

Three-Parameter Logistic Model

The three-parameter logistic (3-PL) model (Birnbaum, 1957, 1958a, 1968) describes the 
relationship between person ability and the probability of a correct response using three 
parameters: difficulty, discrimination, and guessing. The 3-PL model is mathematically 
specified as follows:

P X b a c c c
a b

a bis s i i i i i
i s i

i s i

( | , , , ) ( )
exp[ ( )]

exp[ (
= = + −

−
+ −

1 1
1

θ
θ
θ ))]

,

where:
θs  = ability of person s;
bi  = difficulty of item i;
ai  = discrimination parameter for item I;
ci  = lower asymptote for item i.

The difference between the 3-PL model and the 2-PL and 1-PL models is found in the 
following portion of the equation: ci + (1–c1). The parameter ci represents the item lower 
asymptote, or the lower bound of probability that is independent of theta. This is often 
referred to as the “guessing” parameter. Because the probability is independent of the 
item difficulty and item discrimination parameters, the probability of answering a ques-
tion correctly starts with the estimation of ci (ci > 0) then becomes dependent on θs, ai, 
and bi. Figure 22.5 demonstrates four items.

The items represented in Figure 22.5 have the same difficulty values and discrimination 
values as demonstrated in the 2-PL model example. In this example, however, the 
lower asymptote varies by item. Item i1 has a lower asymptote value of .20, item i2 has 
a lower asymptote value of .40, item i3 has a lower asymptote value of .10, item i4 has a 
lower asymptote value of .15. These values can be interpreted as the probability of a 
 correct response as a result of guessing. In comparing Figure  22.5 to Figure  22.4, the 
 compression of the ICCs as a result of adding the new parameter causes the slope to 
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decrease, or become more flat. Because the values have been compressed between ci 
and 1.00, the discriminatory power of the item is reduced. Therefore, the larger the 
c  value for an item, the less it can discriminate between persons, and the less item 
information it provides.

The 3-PL model is most popular in high-stakes educational settings and is most 
appropriately used when persons possessing low ability level answer difficult items 
correctly. The drawback, however, is that ci is often difficult to estimate because very 
often there are few individuals with low θ values that provide helpful item responses 
to estimate ci . The implication is that large sample sizes are needed to estimate the val-
ues with adequate precision.

The Rasch Model

Historical debates over “which model is better” inundate the psychometric and educa-
tional assessment literature. Most notable is the debate between Benjamin Wright 
and Ronald Hambelton (Wright, 1992) in the context of the model selection for the 
 measurement of academic achievement. These debates are plentiful and too great to 
cover in this short chapter. However, there is one important distinction worth noting: 
the relationship between the Rasch model and the 1-PL model.
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Item Characteristic Curves: 3-PL

Figure 22.5 Graphical depiction of four item characteristic curves (ICCs) in the context of a 
three-parameter logistic model (3-PL): i1 (a1 = 0.50; b1 = −1.00; c1 = .20), i2 (a2 = 1.00; b2 = −1.00; 
c1 = .30), i3 (a3 = 0.50; b3 = 0.00; c1 = .10), i4 (a4 = 1.00; b4 = 0.00; c1 = .15).
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The Rasch model (Rasch, 1960) is often considered a pseudonym for the 1-PL model. 
However, the Rasch model is a specialized model with philosophical and developmental 
underpinnings that contrast with the 1-PL model or any other IRT models. The most 
important philosophical difference is the notion of “model-data fit” versus “data-model 
fit.” The IRT paradigm argues that the rationale for the choice of one model over another 
is that the chosen model accounts better for the observed data. In this paradigm, most 
texts compare and contrast the models as 1-PL versus 2-PL versus 3-PL, and so forth. The 
Rasch perspective, however, focuses on the compatibility of measurement with proper-
ties of invariance and the quantitative laws of fundamental measurement. Andrich 
(2004) notes:

the main challenge in the traditional paradigm is to those with expertise in statistics 
or data analysis to identify a model that accounts better for the given data, notwith-
standing that they may find other problems in the data; the main challenge in the 
Rasch paradigm is for those with expertise in the substantive field of the construct to 
understand the statistical misfits as substantive anomalies and, if possible or necessary, 
to generate new data that better conform to the model while enhancing substantive 
validity of the variable. (p. I–15)

Item Information Function

In IRT, item information refers to the value of the ability parameter. More specifically, it 
is an index that represents the item’s ability to discriminate between persons. Fisher 
(1925) defined information as the reciprocal of the precision with which a parameter 
could be estimated. In IRT, precision is the standard error of measurement, or more 
broadly, the variance of the latent trait. Information, then, is the reciprocal of variance, 
and can therefore be connected to reliability. Under the CTT paradigm, reliability is 
equal to true variance divided by the added sum of true variance and error variance. 
Therefore, reliability is equal to information divided by the sum of information plus 1. 
The more information, the more precise the estimate of a person’s ability. The less infor-
mation, the less precise the estimate of a person’s ability.

As an example, Figure 22.6 provides a visual representation of four item characteristic 
curves (ICCs) and item information functions (IIFs) for the 1-PL, 2-PL, and 3-PL models.

For the 2-PL model, items i2 and i4 have steeper slopes, indicating more discriminating 
power. However, more discriminating power does not equate to more information. 
The nonlinearity of the slopes at the extremes indicates less information. For persons 
with theta values between −1.00 and .00, items i2 and i4 are informative. However, for 
persons with theta values between 1.00 and 2.00, the items have less information. 
Additionally, because the discrimination varies freely by item, information is different 
for each item. If persons have a theta value between .00 and 1.00, item i3 has more 
information than items i1 and i2. In this example then, the question of “how much 
information” is affected by both the theta value and the item. Information is maximized 
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at each ICC’s inflection point and decreases as the ability level approaches the 
extremes of the IIF. Evaluation of the IIF for item i2 in the 2-PL model demonstrates 
that the maximum amount of information is at the theta value of −1.00. In other 
words, the item best discriminates persons with an ability level of −1.00. In models 
other than the 1-PL where each item discriminates similarly, items can differ in both 
discrimination and difficulty, each affecting the item information. Therefore, both 
parameters play a role in selecting how good an item is, where the item is good, and for 
whom the item is good.
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Figure 22.6 Item characteristic curves (ICCs) and item information functions (IFFs) for 1-PL, 
2-PL, and 3-PL models.
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Test Information Function and 
Standard Error of Measurement

Figure 22.7 provides a graphical depiction of test information functions (TIFs) and their 
reciprocal standard errors of measurement (SEMs) for the 1-Pl, 2-PL, and 3-PL models.

Item information, because it is on an interval-level scale, has additive properties. 
Therefore, test information can be computed through the sum of each item response 
functions over all the items on the test. Test information provides the information, 
or reliability, of a test at any given ability level. The test information function is defined 
as follows:

I I
i

N

i( ) ( ),θ θ=
=
∑

1

where:
I = test information at a given ability level (θ);
Ii = the amount of information for item i at ability level θ;
N = total number of items.

Test information is valuable, as it provides detailed levels of precision at all ability levels 
across the latent continuum. This information then provides insight into how the test 
functions in relation to the latent trait and provides diagnostic information in terms of 
particular areas to be targeted in adding or removing items. The range of a test informa-
tion function is 0 to the number of items. The TIF approaches 0 as ability approaches 
∞ and approaches the most information as ability approaches +∞. Therefore, a TIF is an 
increasingly monotonic function of ability.

Standard error of measurement is the reciprocal of test information, and is useful in 
building confidence intervals around an ability estimate. The lower the SEM, the higher 
the information. Conversely, the higher the SEM, the lower the information. The SEM 
function is defined as follows:

SEM
I test information

( )
( )

.θ
θ

= =
1 1

Procedures for Estimating Ability

Unlike the classical test theory paradigm, where persons are scored by summing the 
correct responses to items and converting the observed sum score to a standardized score, 
person measures in IRT are estimated based on persons’ corresponding probabilistic 
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Figure 22.7 Test information functions (TIFs) and standard errors of measurement (SEMs) 
for the 1-Pl, 2-PL, and 3-PL models.
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response pattern to a set of items. As an example, assume a person with high ability on 
the latent construct answers difficult items correctly. This is a likely scenario, as a person 
with a high ability has a higher probability of answering more difficult items correctly. 
Similarly, assume a person with low ability on the latent trait answers difficult items 
incorrectly. This, too, is a likely scenario, as a person with a low ability has a higher prob-
ability of answering more difficult items incorrectly. If a person with a low ability on the 
latent construct answers a more difficult question correctly, a less probable scenario is 
created. In this case, the IIF to this question would violate the probabilistic patterning.

In estimating the ability of a person, then, a value of θ is sought to maximize the 
highest likelihood for the predicted item response pattern based on the proposed 
 measurement model. As discussed earlier, the assumption of local independence posits 
that each item information function is an autonomous reference to the underlying trait 
(see Figure 22.7). If item information functions serve as a referent, than the converse 
(the probability of an incorrect response) can be expressed as:

Q P Xi i= −1 ( | ),θ

IRT models only express the possibility of a correct response. Therefore, in order to 
express joint probability of both answering items correctly and incorrectly, a likelihood 
function must be employed.

Under the umbrella of IRT, there are many procedures for estimation and many 
 rationales for choosing among them, each with its own strengths and weaknesses. Due 
to the space limitation of this chapter, one of the more conventional approaches to ability 
estimation, maximum likelihood estimation (MLE), is discussed.

Likelihood Function

In an assessment context where items are restricted to binary response options, the 
response pattern (i.e., the number of possible outcomes) is represented by 2k. If an 
assessment has four items, the total amount of distinct response patterns is 16. Joint 
probability of item responses is possible due to the assumption of local independence. 
Persons’ responses to individual items are conditionally independent functions of their 
theta value. Therefore, they can be multiplied to obtain the probability of the pattern. 
A  likelihood function is the expression of joint probability: the probability of both 
answering items correctly and incorrectly. As an example, the raw likelihood function of 
one item is expressed as follows:

L u u u P Qs s sI s
i

I

i s
u

i s
usi si( , , | ) ( ) ( ) .1 2

1

1… =
=

−∏θ θ θ

This equation expresses the likelihood of a person’s correct or incorrect response to 
an item and each successive item (in difficulty) through the last item. As an example, 
suppose a person takes a four-item exam. If each of the four items is ranked by difficulty 
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and the person answers questions 1 and 2 correctly and 3 and 4 incorrectly, it could 
be expressed as x1 = 1, x2 = 1, x3 = 0, and x4 = 0. Within the context the equation, this 
can be expressed as:

L x x x P Q P Q P Q P Qs s sI s( , , | ) ( )( )( )( ).1 2 1
1

1
0

2
1

2
0

3
0

3
1

4
0

4
1… =θ

With consideration to last two equations, the scores lie in the range of 0 to 1. Therefore, 
when joint probabilities are calculated, their quotient becomes increasingly small as test 
items increase. Therefore, the raw likelihood function is transformed to a log-likelihood 
function by calculating the natural logarithm of each IRC. The log-likelihood function 
is expressed as follows:

 − … = + −
=∑log ( , , | ) log[ ( )] ( ) log[ ( )L u u u u P u Qs s sI s i

I

si i si i1 2 1
1θ θ θ ]].  

Although the likelihood functions provide a brief overview of the conceptual idea 
behind estimation, this process is not necessarily convenient for large datasets con-
sisting of many persons and many items.

The MLE function provides one of the more conventional and efficient methods 
for locating the exact maximum of the log likelihood in a pattern of person responses. 
The MLE function is an iterative method of estimation for obtaining item and person 
locations. More specifically, the Newton-Raphson method is a popular procedure for 
converging on an MLE in a manner that successively improves the estimation. The MLE 
procedure is a complex mathematical procedure that includes many steps to converge on 
an estimate. Full details and examples can be found in Embretson and Reise (2000).

Common Models for Polytomous 
Response Items

Due to the responsive nature of music assessment contexts, student performances cannot 
always be appropriately measured in binary (right/wrong) terms. Music assessment 
and music psychology contexts often require more compelling evaluation experiences 
in order to more clearly define the latent construct. Therefore, many music assessment 
contexts necessitate the need for items requiring ordered responses, such as Likert-type 
items, semantic differential items, or other ordered-category items. Polytomous IRT 
models are extensions of binary models that examine the interaction between person 
response and ordered response categories. The principles of IRT in the context of binary 
responses can be extended to contexts where polytomous, ordered responses are more 
appropriate. These contexts, however, are much more complex. Therefore, I provide a 
brief overview of two common models that may be most relevant to the field of music 
from an introductory perspective: the partial credit (PC) model and the rating scale 
(RS) model.
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For all polytomous IRT models, item information can be represented at both the item 
level and the category level. Category information can be represented as the log of the 
category response probability:

I Pik ik( ) log ( ),θ
θ

θ= −
∂
∂

2

2

where:
Iik ( )θ  = information for category k of item i across the ability range of θ ;
Pik ( )θ  = probability of responding to in category k of item i.

The category information can then be summed to produce item information:

I I Pi
k

m

ik ik( ) .θ =∑

The Partial Credit Model

The partial credit (PC) model (Masters, 1982) is an extension of the 1-PL model that allows 
for the assignment of “partial credit” to a series of steps within a technical problem. As an 
example, if an item prompts person s to visually identify a chord in a written example of 
a sonata, this may include four distinct tasks: (1) identification of the root; (2) identifi-
cation of the chord type; (3) identification of the inversion; and (4) proper figured bass 
labeling of the chord. For this particular item, four categories exist, each with a distinct 
probability for answering correctly and each with an independent difficulty threshold. 
This model is ideal for testing the assumption of the particular ordering. The PC model 
is mathematically specified as follows:

Pik s
j

k

s ik

i

m

j

k

s ik

( )
exp ( )

exp ( )
,θ

θ δ

θ δ
=

−

−

=

=

−

=

∑
∑ ∑

0

0

1

0

where:
Pik ( )θ  = probability of person s responding in category k for item i;
δik  = difficulty (i.e., location) of the category threshold parameter for item i.

Item information for the PC model is specified as follows:

I k P k Pi
k

i ik
k

i ik( ) ,θ = −








∑ ∑2

2

where:
Ii ( )θ  = information evaluated across the range of θ  across item i summed across k 

categories (k = 0, 1,…, m);
Pik s( )θ  = probability of person s responding in category k of item i.
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The δik  term is often referred to as a “step difficulty” of moving from category k to the 
adjacent category (k-1). For an item that has four distinct categories, three difficulty 
thresholds exist. If we assume that a monotonic relationship between categories exists 
where category b is more difficult than category a, category c is more difficult than 
 category b, and category d is more difficult than category c, than three category thresholds 
exists: (1) the difficulty of moving from category a to category b (δ1i); (2) the difficulty 
of moving from category b to category c (δ2i); and (3) the difficulty of moving from 
category c to category d (δ3i). Figure 22.8 illustrates an example of category response 
curves for a polytomous item with four response categories.

Each of the category thresholds is defined by where each of the category response 
curves intersect. For the exemplar item in Figure 22.8, the threshold parameters are 
δ1 2 00i = − . , δ2 0 50i = − . , δ3 0 50i = . . At these intersection points, each step to the next 
category becomes probabilistically more likely to move to the next step as θ increases. 
The important conceptual idea to consider in applying the PC model is that categories 
are most often not equal in difficulty. Therefore, summed category responses in a poly-
tomous item are equally as problematic as summed binary responses in a dichotomous 
item and warrant a similarly important empirical investigation.

The Rating Scale Model

The rating scale (RS) model (Andrich, 1978) allows for the analysis of polytomous items 
where the ordered response format is the same across all items. An example may include 
a Likert-type scale where the response categories are identical for each item (strongly 
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Figure 22.8 Category response curves for a four-category polytomous item.
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agree, agree, disagree, strongly disagree). Each item is described by having a single scale 
location parameter (λi) that reflects the difficulty of the item. In the RS model, a category 
threshold measure (δ j) is similarly described for all items in the measure. In other 
words, the RS model specifies that all of the items within the measure share the same 
rating scale structure. The RS model is mathematically specified as follows:

Pik s
j

k

s i k

i

m

j

i

s i k

( )
exp ( ( ))

exp ( ( ))
,θ

θ δ τ

θ δ τ
=

− +

− +

=

=

−

=

∑
∑ ∑

0

0

1

0

where:
Pik s( )θ = the probability of person s responding in category k (k = 0, 1, . . . , m) of item I;
δi  = the location (i.e., difficulty) of the item parameter;
τ k  = the common category threshold (i.e., boundary) for all items.

Item information for the PC model is specified as follows:

I k P k Pi
k

i ik
k

i ik( ) ,θ = −








∑ ∑2

2

where:
Ii ( )θ  = information evaluated across the range of θ  across item i summed across k 

categories (k = 0, 1, . . . , m);
Pik ( )θ =  probability of responding to in category k of item i.

Note that the model specification of item information for both the RS and PC models is 
the same. Both the PC and RS models as presented here adhere to the requirement of 
specified objectivity as in the 1-PL model. As a result, the item discriminations are both 
held constant and the model is in the same metric. However, Pik ( )θ  will yield different 
results across the same dataset, thereby providing an overall difference in the analysis 
between the two models.

Linacre (2000, p. 768) provides nine important detailed considerations in deciding 
between a PC model and a RS model: (1) design of the items, (2) communication with the 
audience, (3) size of the dataset, (4) construct and predictive validity, (5) fit considerations, 
(6) constructing new items, (7) unobserved categories, (8) statistical information, and 
(9) antifragility (the simpler the better).

Multidimensionality

In contrast to unidimensional models, where only one parameter represents a person, 
multidimensional item response theory (MIRT) models include two or more parameters 
to represent persons (Reckase, 2009). Although unidimensional models are more sensi-
ble in educational contexts where most tests purport to assess one specific construct, 
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arguments have been made that unidimensional models do not sufficiently model complex 
domains often associated with many psychological areas where multiple latent ability 
dimensions are manifested simultaneously or nested within a more broad construct as 
either compensatory (i.e., latent ability scores for multiple dimensions are assumed to be 
independent and combine additively to influence the probability of a correct response) 
or noncompensatory (latent ability scores for multiple dimensions are assumed to be 
confounded and combine multiplicatively to influence the probability of responding 
to an item correctly) factors. Where the probability of a correct response is dependent 
on a single estimate of ability (θ) for unidimensional IRT models, MIRT models posit 
that the probability of a correct response is dependent on a vector θ on K-dimensional, 
continuous latent ability dimension (θk).

There are a wide variety of MIRT models for a multitude of data types that are too 
exhaustive for this chapter (see Reckase, 2009). Therefore, only the basic multidimen-
sional extensions of the 1-PL, 2-PL, and 3-PL models are outlined.

The multidimensional extension of the 1-PL model can be expressed as:

P X d
d

dis s j
m sm i

m sm i

( | , )
exp( )

exp( )
,= =

∑ +

+ ∑ +
1

1
θ

θ
θ

where:
xis= response of person s to item i;
θsm=  ability for person s on dimension m;
di = easiness intercept for item i.

The multidimensional extension of the 2-PL model can be expressed as:

P X d a
a d

a dis s i i
m im sm i

m im sm i

( | , , )
exp( )

exp( )
,= =

∑ +

+ ∑ +
1

1
θ

θ
θ

where:
xis= response of person s to item i;
θsm  = ability for person s on dimension m;
di = easiness intercept for item i;
aim = discrimination for item i on dimension m.

The multidimensional extension of the 3-PL model can be expressed as:

P X d a c c c
a d

ais s i i i i i
m im sm i

m im

( | , , , ) ( )
exp( )

exp(
= = + −

∑ +

+ ∑
1 1

1
θ

θ
θssm id+ )

,

where:
xis= response of person s to item i;
θsm  = ability for person s on dimension m;
di = easiness intercept for item i;
aim = discrimination for item i on dimension m;
ci = lower asymptote for item i.
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Substantive Implications for 
Measurement and Evaluation in Music

In an educational climate that is becoming increasingly data-driven, the field of music is 
at a clear pivot point where the “subjectivity” of music making is becoming progressively 
interconnected with the “objectivity” of measuring student achievement and program 
accountability. The field can no longer ignore the demands of having to provide empiri-
cal data that validly, reliably, and fairly reflect both students’ growth in the classroom 
and program effectiveness. Furthermore, the field can no longer withstand minimal 
approaches to collecting, analyzing, interpreting, and disseminating such data, as there 
have never been higher consequences for the implications of its interpretation and use. 
It is the field’s ethical responsibility to provide sound empirical data and robust assess-
ment processes that reflect true student learning in meaningful ways. In order to do so 
in a valid, reliable, and fair manner, the field must (1) recognize the complex nature of 
measuring and evaluating musical constructs, (2) spend considerable time and energy 
gaining a more grounded and fundamental understanding of psychometric theories, 
and (3) provide better mechanisms and opportunities for training researchers and prac-
titioners in appropriate selection and implementation of psychometric theories.

Item response theory is a viable option for music researchers who want to enhance 
the data analysis and measurement instrument construction processes. As the field of 
music becomes more familiar with the theories and applications of IRT, important 
music assessment issues may continue to be addressed and reexamined from new, 
interesting, and informative perspectives.
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